Biological Oceanography Lab
Research Group Website

Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations

Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations

Peng Jin, Kunshan Gao. (2016) Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations. Marine Pollution Bulletin, 103:101-108.
Peng Jin, Kunshan Gao
Ocean acidification; Coccolithophore; Evolution; Phenotypic plasticity; Fitness
2016
‚ÄčOcean acidification (OA), induced by rapid anthropogenic CO2 rise and its dissolution in seawater, is known to have consequences for marine organisms. However, knowledge on the evolutionary responses of phytoplankton to OA has been poorly studied. Here we examined the coccolithophore Gephyrocapsa oceanica, while growing it for 2000 generations under ambient and elevated CO2 levels. While OA stimulated growth in the earlier selection period (from generations ~ 700 to ~ 1550), it reduced it in the later selection period up to 2000 generations. Similarly, stimulated production of particulate organic carbon and nitrogen reduced with increasing selection period and decreased under OA up to 2000 generations. The specific adaptation of growth to OA disappeared in generations 1700 to 2000 when compared with that at 1000 generations. Both phenotypic plasticity and fitness decreased within selection time, suggesting that the species' resilience to OA decreased after 2000 generations under high CO2 selection.
dx.doi.org/10.1016/j.marpolbul.2015.12.039